Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Although reliable rechargeable batteries represent a key transformative technology for electric vehicles, portable electronics, and renewable energy, there are few nondestructive diagnostic techniques compatible with realistic commercial cell enclosures. Many battery failures result from the loss or chemical degradation of electrolyte. In this work, we present measurements through battery enclosures that allow quantification of electrolyte amount and composition. The study employs instrumentation and techniques developed in the context of zero-to-ultralow-field nuclear magnetic resonance (ZULF NMR), with optical atomic magnetometers as the detection elements. In contrast to conventional NMR methodology, which suffers from skin-depth limitations, the reduced resonance frequencies in ZULF NMR make battery housing and electrodes transparent to the electromagnetic fields involved. As demonstrated here through simulation and experiment, both the solvent and lithium-salt components of the electrolyte (LiPF6) signature could be quantified using our techniques. Further, we show that the apparatus is compatible with measurement of pouch-cell batteries.more » « lessFree, publicly-accessible full text available January 2, 2026
-
null (Ed.)Hyperpolarized fumarate is a promising agent for carbon-13 magnetic resonance metabolic imaging of cellular necrosis. Molecular imaging applications require nuclear hyperpolarization to attain sufficient signal strength. Dissolution dynamic nuclear polarization is the current state-of-the-art methodology for hyperpolarizing fumarate, but this is expensive and relatively slow. Alternatively, this important biomolecule can be hyperpolarized in a cheap and convenient manner using parahydrogen-induced polarization. However, this process requires a chemical reaction, and the resulting hyperpolarized fumarate solutions are contaminated with the catalyst, unreacted reagents, and reaction side product molecules, and are hence unsuitable for use in vivo. In this work, we show that the hyperpolarized fumarate can be purified from these contaminants by acid precipitation as a pure solid, and later redissolved at a chosen concentration in a clean aqueous solvent. Significant advances in the reaction conditions and reactor equipment allow us to form hyperpolarized fumarate at a concentration of several hundred millimolar, at 13C polarization levels of 30-45%.more » « less
An official website of the United States government

Full Text Available